前缀和与差分
一维前缀和
一维前缀和可以通过 \(O(n)\) 的预处理,在 \(O(1)\) 的时间内求出数组中一段区间的和。
模版题
代码模版
参考实现
#include <iostream>
using namespace std;
int a[100010];
int s[100010];
int main()
{
int n,q;
scanf("%d %d",&n,&q);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
s[i]=a[i]+s[i-1];
}
for(int i=1;i<=q;i++){
int l,r;
scanf("%d%d",&l,&r);
printf("%d\n",s[r]-s[l-1]);
}
return 0;
}
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int q = sc.nextInt();
int[] a = new int[n + 1];
int[] s = new int[n + 1];
for (int i = 1; i <= n; i++) {
a[i] = sc.nextInt();
s[i] = a[i] + s[i - 1];
}
for (int i = 1; i <= q; i++) {
int l = sc.nextInt();
int r = sc.nextInt();
System.out.println(s[r] - s[l - 1]);
}
}
}
n, q = map(int, input().split())
a = list(map(int, input().split()))
s = [0] * (n + 1)
for i in range(1, n + 1):
s[i] = a[i - 1] + s[i - 1]
for _ in range(q):
l, r = map(int, input().split())
print(s[r] - s[l - 1])
一维差分
一维差分可以通过 \(O(n)\) 的预处理,在 \(O(1)\) 的时间内对数组中一段区间的数进行加减。
模版题
代码模版
参考实现
#include<bits/stdc++.h>
using namespace std;
const int N=2e5+10;
int a[N],b[N];
int n,m;
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
b[i]=a[i]-a[i-1];
}
for(int i=1;i<=m;i++){
int l,r,d;
scanf("%d%d%d",&l,&r,&d);
b[l]+=d;
b[r+1]-=d;
}
for(int i=1;i<=n;i++){
b[i]=b[i-1]+b[i];
printf("%d ",b[i]);
}
}
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
long[] a = new long[n + 1];
long[] b = new long[n + 2];
for (int i = 1; i <= n; i++) {
a[i] = in.nextLong(); // 输入序列
b[i] = a[i] - a[i - 1];
}
while (m-- > 0) {
int l = in.nextInt();
int r = in.nextInt();
int d = in.nextInt();
b[l] += d;
b[r + 1] -= d;
}
for (int i = 1; i <= n; i++) {
b[i] = b[i - 1] + b[i];
System.out.print(b[i] + " ");
}
System.out.println();
}
}
import os
import sys
n,m=map(int,input().split())
a=[0]+list(map(int,input().split()))+[0]#len=n+2
b=[0]*(n+2)
for i in range(1,n+1):
b[i]=a[i]-a[i-1]#差分方程
for i in range(0,m):
l,r,d=map(int,input().split())
b[l]+=d
b[r+1]-=d
for i in range(1,n+1):
b[i]=b[i]+b[i-1]
print(b[i],end=" ")
二维前缀和
二维前缀和可以通过 \(O(n\times m)\) 的预处理,在 \(O(1)\) 的时间内求出一个子矩阵的和。
模板题
代码模板
参考实现
#include <iostream>
using namespace std;
int a[1010][1010];
int s[1010][1010];
int main()
{
int n,m,q;
scanf("%d %d %d",&n,&m,&q);
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
scanf("%d",&a[i][j]);
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
s[i][j]=a[i][j]+s[i-1][j]+s[i][j-1]-s[i-1][j-1];
}
}
for(int i=1;i<=q;i++){
int x1,y1,x2,y2;
scanf("%d %d %d %d",&x1,&y1,&x2,&y2)
printf("%d\n",s[x2][y2]-s[x1-1][y2]-s[x2][y1-1]+s[x1-1][y1-1]);
}
}
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
int q = sc.nextInt();
int[][] a = new int[n + 1][m + 1];
int[][] s = new int[n + 1][m + 1];
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
a[i][j] = sc.nextInt();
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
s[i][j] = a[i][j] + s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1];
}
}
for (int i = 1; i <= q; i++) {
int x1 = sc.nextInt();
int y1 = sc.nextInt();
int x2 = sc.nextInt();
int y2 = sc.nextInt();
System.out.println(s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]
}
}
}
n, m, q = map(int, input().split())
a = [[0] * (m + 1) for _ in range(n + 1)]
s = [[0] * (m + 1) for _ in range(n + 1)]
for i in range(1, n + 1):
row = list(map(int, input().split()))
for j in range(1, m + 1):
a[i][j] = row[j - 1]
s[i][j] = a[i][j] + s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1]
for _ in range(q):
x1, y1, x2, y2 = map(int, input().split())
result = s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]
print(result)
二维差分
二维差分可以通过 \(O(n\times m)\) 的预处理,在 \(O(1)\) 的时间内对一个子矩阵的数进行加减。
模板题
代码模板
参考实现
#include <iostream>
using namespace std;
int a[1010][1010];
int b[1010][1010];
int main()
{
int n,m,q;
scanf("%d %d %d",&n,&m,&q);
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
scanf("%d",&a[i][j]);
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
b[i][j]=a[i][j]-a[i-1][j]-a[i][j-1]+a[i-1][j-1];
}
}
for(int i=1;i<=q;i++){
int x1,y1,x2,y2,d;
scanf("%d %d %d %d %d",&x1,&y1,&x2,&y2,&d);
b[x1][y1]+=d;
b[x2+1][y1]-=d;
b[x1][y2+1]-=d;
b[x2+1][y2+1]+=d;
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
b[i][j]=b[i][j]+b[i-1][j]+b[i][j-1]-b[i-1][j-1];
printf("%d ",b[i][j]);
}
printf("\n");
}
}
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
int q = sc.nextInt();
int[][] a = new int[n + 1][m + 1];
int[][] b = new int[n + 1][m + 1];
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
a[i][j] = sc.nextInt();
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
b[i][j] = a[i][j] - a[i - 1][j] - a[i][j - 1] + a[i - 1][j - 1];
}
}
for (int i = 1; i <= q; i++) {
int x1 = sc.nextInt();
int y1 = sc.nextInt();
int x2 = sc.nextInt();
int y2 = sc.nextInt();
int d = sc.nextInt();
b[x1][y1] += d;
b[x2 + 1][y1] -= d;
b[x1][y2 + 1] -= d;
b[x2 + 1][y2 + 1] += d;
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
b[i][j] = b[i][j] + b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1];
System.out.print(b[i][j] + " ");
}
System.out.println();
}
}
}
n, m, q = map(int, input().split())
a = [[0] * (m + 1) for _ in range(n + 1)]
b = [[0] * (m + 1) for _ in range(n + 1)]
for i in range(1, n + 1):
row = list(map(int, input().split()))
for j in range(1, m + 1):
a[i][j] = row[j - 1]
b[i][j] = a[i][j] - a[i - 1][j] - a[i][j - 1] + a[i - 1][j - 1]
for _ in range(q):
x1, y1, x2, y2, d = map(int, input().split())
b[x1][y1] += d
b[x2 + 1][y1] -= d
b[x1][y2 + 1] -= d
b[x2 + 1][y2 + 1] += d
for i in range(1, n + 1):
for j in range(1, m + 1):
b[i][j] = b[i][j] + b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1]
print(b[i][j], end=" ")
print()